3.101 \(\int (c+d x)^m \cos (a+b x) \, dx\)

Optimal. Leaf size=131 \[ \frac {i e^{-i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (m+1,\frac {i b (c+d x)}{d}\right )}{2 b}-\frac {i e^{i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (-\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (m+1,-\frac {i b (c+d x)}{d}\right )}{2 b} \]

[Out]

-1/2*I*exp(I*(a-b*c/d))*(d*x+c)^m*GAMMA(1+m,-I*b*(d*x+c)/d)/b/((-I*b*(d*x+c)/d)^m)+1/2*I*(d*x+c)^m*GAMMA(1+m,I
*b*(d*x+c)/d)/b/exp(I*(a-b*c/d))/((I*b*(d*x+c)/d)^m)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3307, 2181} \[ \frac {i e^{-i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (\frac {i b (c+d x)}{d}\right )^{-m} \text {Gamma}\left (m+1,\frac {i b (c+d x)}{d}\right )}{2 b}-\frac {i e^{i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (-\frac {i b (c+d x)}{d}\right )^{-m} \text {Gamma}\left (m+1,-\frac {i b (c+d x)}{d}\right )}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^m*Cos[a + b*x],x]

[Out]

((-I/2)*E^(I*(a - (b*c)/d))*(c + d*x)^m*Gamma[1 + m, ((-I)*b*(c + d*x))/d])/(b*(((-I)*b*(c + d*x))/d)^m) + ((I
/2)*(c + d*x)^m*Gamma[1 + m, (I*b*(c + d*x))/d])/(b*E^(I*(a - (b*c)/d))*((I*b*(c + d*x))/d)^m)

Rule 2181

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> -Simp[(F^(g*(e - (c*f)/d))*(c +
d*x)^FracPart[m]*Gamma[m + 1, (-((f*g*Log[F])/d))*(c + d*x)])/(d*(-((f*g*Log[F])/d))^(IntPart[m] + 1)*(-((f*g*
Log[F]*(c + d*x))/d))^FracPart[m]), x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rubi steps

\begin {align*} \int (c+d x)^m \cos (a+b x) \, dx &=\frac {1}{2} \int e^{-i (a+b x)} (c+d x)^m \, dx+\frac {1}{2} \int e^{i (a+b x)} (c+d x)^m \, dx\\ &=-\frac {i e^{i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (-\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (1+m,-\frac {i b (c+d x)}{d}\right )}{2 b}+\frac {i e^{-i \left (a-\frac {b c}{d}\right )} (c+d x)^m \left (\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (1+m,\frac {i b (c+d x)}{d}\right )}{2 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 122, normalized size = 0.93 \[ -\frac {i e^{-\frac {i (a d+b c)}{d}} (c+d x)^m \left (e^{2 i a} \left (-\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (m+1,-\frac {i b (c+d x)}{d}\right )-e^{\frac {2 i b c}{d}} \left (\frac {i b (c+d x)}{d}\right )^{-m} \Gamma \left (m+1,\frac {i b (c+d x)}{d}\right )\right )}{2 b} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^m*Cos[a + b*x],x]

[Out]

((-1/2*I)*(c + d*x)^m*((E^((2*I)*a)*Gamma[1 + m, ((-I)*b*(c + d*x))/d])/(((-I)*b*(c + d*x))/d)^m - (E^(((2*I)*
b*c)/d)*Gamma[1 + m, (I*b*(c + d*x))/d])/((I*b*(c + d*x))/d)^m))/(b*E^((I*(b*c + a*d))/d))

________________________________________________________________________________________

fricas [A]  time = 1.04, size = 96, normalized size = 0.73 \[ \frac {i \, e^{\left (-\frac {d m \log \left (\frac {i \, b}{d}\right ) - i \, b c + i \, a d}{d}\right )} \Gamma \left (m + 1, \frac {i \, b d x + i \, b c}{d}\right ) - i \, e^{\left (-\frac {d m \log \left (-\frac {i \, b}{d}\right ) + i \, b c - i \, a d}{d}\right )} \Gamma \left (m + 1, \frac {-i \, b d x - i \, b c}{d}\right )}{2 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^m*cos(b*x+a),x, algorithm="fricas")

[Out]

1/2*(I*e^(-(d*m*log(I*b/d) - I*b*c + I*a*d)/d)*gamma(m + 1, (I*b*d*x + I*b*c)/d) - I*e^(-(d*m*log(-I*b/d) + I*
b*c - I*a*d)/d)*gamma(m + 1, (-I*b*d*x - I*b*c)/d))/b

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (d x + c\right )}^{m} \cos \left (b x + a\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^m*cos(b*x+a),x, algorithm="giac")

[Out]

integrate((d*x + c)^m*cos(b*x + a), x)

________________________________________________________________________________________

maple [F]  time = 0.10, size = 0, normalized size = 0.00 \[ \int \left (d x +c \right )^{m} \cos \left (b x +a \right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^m*cos(b*x+a),x)

[Out]

int((d*x+c)^m*cos(b*x+a),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (d x + c\right )}^{m} \cos \left (b x + a\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^m*cos(b*x+a),x, algorithm="maxima")

[Out]

integrate((d*x + c)^m*cos(b*x + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \cos \left (a+b\,x\right )\,{\left (c+d\,x\right )}^m \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(a + b*x)*(c + d*x)^m,x)

[Out]

int(cos(a + b*x)*(c + d*x)^m, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (c + d x\right )^{m} \cos {\left (a + b x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**m*cos(b*x+a),x)

[Out]

Integral((c + d*x)**m*cos(a + b*x), x)

________________________________________________________________________________________